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We consider the chaotic logistic map with stochastic initial conditions. All initial conditions assume a
Gaussian distribution centered in the unit interval with a small dispersion. We show that the system ex-
hibits behavior characterized by three different regimes (called initial, transient, and final). The initial
interval is characterized by the Gaussian closure being accurate and the evolution of the system dom-
inated by the evolution of the mean. The transient interval is characterized by rapid growth of all cumu-
lants and a breakdown of Gaussian closure. We identify this period as the Suzuki scaling regime. An al-
ternative closure scheme based on the beta distribution is also introduced. We find that the evolution
equations for the mean and dispersion based on a beta distribution closure give accurate predictions over
all iterations. This type of closure assumes nothing about the vanishing of higher-order cumulants (in
fact, cumulants of all order are nonvanishing). The possible relevance of these results to clump kinetics

is also addressed.

PACS number(s): 02.50.Ey, 47.27.Eq, 52.35.Ra, 05.45.+b

The statistical closure problem arises whenever one is
attempting to solve a nonlinear stochastic equation. The
wide use of closure in statistical models raises the issue of
their validity as a system evolves. That is, given a closure
relation at some initial time, does the closure relation
remain valid for all time? It is of course only possible to
answer this question definitively for models which can be
solved independent of the closure approximation (either
numerically or, if one is lucky, analytically). Only for
this class of problems can a direct comparison be made
between the true probability distribution and a distribu-
tion based on an expansion in moments derived from the
closure evolution equations. Nonlinear maps with either
external noise [1] or stochastic initial conditions offer an
excellent arena for testing the viability of closure rela-
tions. They exhibit complicated dynamics while at the
same time being amenable to numerical calculation. In
particular, the logistic map possesses much of the struc-
ture of more complicated maps including fixed points,
period doubling, and chaos. In this paper we will con-
cern ourselves with the statistical closure problem as it
relates to the logistic map with stochastic initial condi-
tions:

X, =ux,(1—x,) . (1)

We will be concerned primarily with the case u=4. For
simplicity we will refer to this as the chaotic logistic map.
The specific problem we wish to address is, given a
Gaussian distribution of initial values centered in the unit
interval, how does this probability distribution evolve
when each point of the function evolves according to the
logistic map? In particular, how well do the evolution
equations for the moments (which are based on a given
closure relation) do in predicting the correct dynamics?
In what regimes and under what circumstances do the
closure relations work? Our choice of Gaussian initial
conditions is purely arbitrary and done for ease of
analysis (the evolution equations for the moments are
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easy to derive for a Gaussian closure) and besides, there is
no a priori reason for choosing any other set of stochastic
initial conditions. The questions which we address in this
paper constitute an admittedly restricted set of parameter
space, but we feel that something can be learned by
studying the closure issue in the context of a well under-
stood dynamical process. The logistic map provides an
elementary environment in which to study not only the
closure problem but also the problem of how a compact
group of particles evolve when under some type of chaot-
ic influence. For example, Sommerer and Ott [2] have
looked at the behavior of an aggregate of tracer particles
on the surface of an unstable fluid. The theoretical basis
of their work relied on characterizing the evolution of a
particle at a specific time via a random map. Thus, the
above problem presents an effective toy model for under-
standing clump kinetics in turbulent fluids and plasmas.

Gaussian closure applied to the logistic map for arbi-
trary p implies a two-parameter description of the dy-
namics given by

M,  =uM,1—M,)—uo?l , (2)
ol =t —=2M,)V ol +2uto) (3

n

where M, is the mean value at iterate n and o is the cor-
responding dispersion. A further simplification can be
realized by neglecting the o in Eq. (3). This we call the
van Kampen expansion of the stochastic logistic map.
For p <3, the fluctuations remain perturbations to the
mean for all n and thus the above equations accurately
represent the dynamics. However, there does exist a
transient period (determined by where the mean equals
half of the fixed point value) in which the fluctuations
grow, thereby weakening the validity of the Gaussian clo-
sure approximation. This is an example of Kubo fluctua-
tion enhancement [3].

Qualitatively, any closure scheme based on a Gaussian
distribution for the chaotic logistic map is doomed to
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failure. We base this fact on a simple observation. The
steady-state distribution also known as the invariant dis-
tribution has been solved analytically for this case [4] and
is given by
1

P, . . Vel (4)
This is the well-known solution to the Perron-Frobenius
equation [4] and it is obviously non-Gaussian.

The philosophy of this paper is that the Gaussian clo-
sure represents a two-variable parametrization of the
evolving distribution function based on the initial distri-
bution. Choosing instead a closure scheme based on a
two-variable parametrization of the invariant distribution
leads us to consider the following function:

Py 1 9,1
px)=X"_1=x)" (5)
B(p,»q,)

This function, called the beta distribution, has several in-
teresting properties. It is normalized over the [0,1] inter-
val. The mean and dispersion of P,(x) are related to p
and g by

__Pa
p.ta,’

o= Pndn . ®
(1+p,+q,)p,+q,)

n

As p and g approach 1, the steady-state distribution is
realized. For p,q >>1, the distribution looks Gaussian.
In fact, as p and g get large, all cumulants greater than
second order go to zero. Like the Gaussian distribution,
P,(x) is parametrized by two variables. Hence we would
not expect it to be an exact solution to the Perron-
Frobenius equation and therefore Eq. (5) would not be ex-
pected to be accurate for all cumulants for all iterations.
However, Eq. (5) should be a much better description of
the dynamics for late iterations. In addition, because it
looks Gaussian for large p and ¢, we would expect Eq. (5)
to give an approximate description of the dynamics in the
initial and transition regions.

Assuming the beta distribution accurately describes the
stochastic evolution of the chaotic logistic map with
Gaussian distributed initial conditions, the Nth-order
moment at iterate n is simply

B(N+p,.q,)
Ny =— 7
= gy 7

From Eq. (6) we have
_ M!-M}-M,o? _(1—=M,)M,—M}—0?)

pn i qn
2 -

(8)

From the recursive formula for the I' function [i.e.,
I'(x +1)=xTI'(x)] we obtain the following closure rela-
tion based on the beta distribution:

(N—1+p,)
(N—1+p,+gq,)

(xN)= (xN-1) . 9)

It is now straightforward to obtain a set of equations

describing the evolution of the first- and second-order cu-
mulants based on the beta closure scheme [Eq. (9)]. For
simplicity, the coefficient in Eq. [9] is written as
Cy(M,,02). Hence

(xM)=CyCy_Cy_yp . Ax2}) . (10)

The evolution equations for the mean and the dispersion
are given by

M, ,=uM,(1—M,)—po? , (11)
ok =u1—-2C5(M,,02)
+Cy(M,,02)C4(M,,02)) (02 +M?2)
—[M,(1—-M,)—02 %2 . (12)

It is important to realize that unlike the Gaussian closure
approximation discussed earlier, higher-order cumulants
within the beta closure approximation are not zero. Be-
cause of Eq. (10), all cumulants are defined in terms of the
mean and dispersion and their dynamics is therefore
known once the evolution of the mean and dispersion is
known. Equations (11) and (12) are admittedly a more
complicated set of equations than those encountered ear-
lier [Egs. (2) and (3)], but as we shall see, it gives a re-
markably accurate description of the stochastic behavior
of the logistic map.

The numerical procedure used to simulate the chaotic
logistic map with stochastic initial conditions is carried
out in a straightforward manner. We generate indepen-
dent Gaussian distributed random deviates using the
Box-Muller method. These deviates are characterized by
their mean and standard deviation. The logistic map is
iterated using these random numbers as initial conditions.
Given that we are constrained not to exceed the edges of
the unit interval, we always choose the mean and width
of the Gaussian such that the mean is at least five stan-
dard deviations away from an endpoint. While in theory
there is a nonzero probability of finding an initial point
far from the mean, we never actually encounter this situ-
ation since the probability is vanishingly small. The map
is iterated for 100 steps for each of 10° initial starting
points. At every iterate n the averages of x are calculat-
ed for k =1,...,4. We then compute the first- through
fourth-order cumulants. The results obtained using a
direct numerical simulation are then compared with
those obtained by numerically solving the analytic Egs.
(11) and (12). All computations were performed in dou-
ble precision on an SGI workstation.

We present here a comparison of the results of Egs. (2)
and (3) and Eqgs. (11) and (12) with exact simulations for
initial conditions given by M,_,=0.01 and
02 _o=4X107°. Other sets of initial values for the mean
and dispersion were run with values for the mean varying
between 107> and 0.75 and values for the dispersion vary-
ing between 10™!* and 4X107°. The results we present
here offer a representative sample.

Figures 1(a)-1(d) show the cumulants as a function of
iterate for the initial parameters M,_,=0.01 and
0% _y=4X107° as calculated both by the beta distribu-
tion, the van Kampen expansion, and direct simulation.
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FIG. 1. p=4,M,_,=0.01,0%_,=4X10"°.
(a) Mean vs iterate, (b) dispersion vs iterate, (c)
third-order cumulant vs iterate, (d) fourth-
order cumulant vs iterate. In (c) and (d) the
circles represent the results of numerical simu-
lation and crosses represent the results of the
beta closure equations. The lines are a guide to
the eye.
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FIG. 1. (Continued).
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The Gaussian closure equations are unstable for all the
initial conditions we have looked at in the sense that
eventually the iterate lies outside of the [0,1] interval. It is
clear that the van Kampen expansion and direct simula-
tion agree only initially. In particular, whereas direct
simulations shows a definite steady state, the van Kam-
pen expansion looks chaotic. We can trace this observa-
tion to the fact that the fluctuations no longer remain a
small perturbation to the evolution of the mean, hence in-
validating the linearization assumption used in deriving
the van Kampen expansion. Finally, the beta closure ap-
proximation yields very accurate results for the mean and
dispersion. In particular, the correct steady state is
reached. It is evident from the direct simulations that
there are three distinct regimes: an initial regime where
the cumulants slowly grow or remain small, a transient
regime where the cumulants increase rapidly, and a final
regime (by about iterate 7) where the cumulants reach a
steady-state value. In the case of the third-order cumu-
lant it is zero while for the fourth-order cumulant it is
—0.023. Both values are consistent with the invariant
distribution. Like the Gaussian closure approximation
for the logistic map with u <3, the beta closure is weak-
est (for higher-order cumulants) in the transient regime.
The evolution of the exact probability distribution
beautifully illustrates the approach to steady state. The
probability distribution obtained from this particular
simulation clearly shows the initial narrow Gaussian dis-
tribution spreading as more of the phase space of the map
is explored. Eventually, the distribution loses its Gauss-
ian character as the iterates accumulate at the ends of the
interval. Finally, the invariant distribution is attained as
steady state has been reached. Since we have predictions
for the mean and dispersion based on the beta closure ap-
proximation as a function of iterate, it is possible to com-
pute p,,q, numerically and get a prediction for the beta
probability distribution Eq. (5). A comparison can then
be made between the probability distribution based on
direct simulation versus beta closure. Figure 2 shows the

result of that comparison. Note the excellent agreement
(within statistical errors) for all iterates.

Suzuki (5] has analyzed theoretically the behavior of
the relative diffusion (in our case the dispersion) for the
chaotic logistic map using his scaling theory. We wish to
compare our numerical results with his predictions. Scal-
ing theory predicts that the dispersion should behave in
the initial and transient regimes like

5 1—cos(2"8)

o~ .

2
In Fig. 3 we show comparisons between the numerical re-
sults for the dispersion versus the scaling theory predic-
tion. The results show good qualitative agreement in the
initial and transient regimes where the scaling theory ap-
plies. The agreement is completely wrong in the final
steady-state regime. However, this is to be expected since
the theory is not relevant in the steady state. Of particu-
lar interest is the fact that the iterate at which the tran-
sient regime occurs, and hence when the Gaussian and
van Kampen expansions are breaking down, is predicted

to be where the scaling function is order 1. That is,

n o~ —In(8)
¢ In(2)

An estimate based on Eq. (14) yields an iterate of 7 for an
initial dispersion of 4X 10~ and 15 for an initial disper-
sion of 107 1%, Both agree with the numerical results.

The results of our calculations can now be summa-
rized. The linear Gaussian closure gives the approximate
early (n <<n_) evolution of the logistic map but breaks
down after a certain number of iterations. The break-
down occurs when the fluctuations rapidly grow and be-
come comparable to the mean. This is the transient re-
gime identified by Suzuki scaling theory (n~n,). The
transient regime is the first indication of a complete
breakdown of the Gaussian closure scheme. Finally, the
stochastic system enters a steady-state regime character-
ized by the invariant distribution (n >>n_). Interestingly

(13)

(14)
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FIG. 2. Probability distribution for p=4,
M,_,=10"2, 02_,=4X10"%  numerical
simulations vs beta function for p and g ob-
6 tained analytically. (a) Iterate 2 (p =23.4794,
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o (d) iterate 15 (p =0.5, ¢ =0.5). The solid line
represents the numerical simulation while the
circles represent the analytic result of Eq. (5).
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(d)

FIG. 2. (Continued).

enough, by basing a closure scheme on the steady-state
distribution instead of the initial distribution, we have
been able to come up with a closure scheme, albeit not
perfect, that gives very accurate results for the mean and
dispersion over all three regimes. In addition, higher-
order cumulants are calculated properly in the initial and
final regimes. However, any closure scheme based on a
two-variable parameter set is not going to get everything
right and the evidence for this is the differences between
theory and experiment in the transient regime of the
higher-order cumulants. It is important to realize that
what we have introduced is a different type of closure
scheme than is typically encountered. The beta closure
scheme is nonperturbative in the sense that it assumes
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nothing about the relative magnitudes of higher- to
lower-order moments. Instead, it only assumes that they
can be related to the mean and dispersion in a straight-
forward way.

As far as the dynamic evolution of a clump of Gauss-
ian distributed particles is concerned, the above results
can be easily interpreted. The three regimes are charac-
terized by the clump behaving initially like a coherent ob-
ject whose dispersion or width remains small while its
mean evolves according to the logistic map without fluc-
tuations. The second regime is characterized by the par-
ticles in the clump diverging exponentially from each
other. This is the transient regime described by the
Suzuki scaling theory. Finally, the clump distribution set-

FIG. 3. Dispersion vs iterate for various
means and an initial dispersion of 4X107%.
The result of the Suzuki scaling formula is
shown for comparison.
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tles to a final state defined by its filling the [0,1] interval
with accumulations near the endpoints.
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